3D stress analysis tool (Mohr’s circle plot) using Javascript

This is an interactive tool for 3D stress analysis. It is made with JavaScript using these libraries: 

  1. MathJax
  2. Apache ECharts
  3. Tweakpane

The source code is included within the HTML.

stress invariants: $$ \begin{aligned} I_{1} &=\sigma_{11}+\sigma_{22}+\sigma_{33} \\ I_{2} &=\sigma_{11} \sigma_{22}+\sigma_{22} \sigma_{33}+\sigma_{33} \sigma_{11}-\sigma_{12}^{2}-\sigma_{23}^{2}-\sigma_{31}^{2} \\ I_{3} &=\sigma_{11} \sigma_{22} \sigma_{33}-\sigma_{11} \sigma_{23}^{2}-\sigma_{22} \sigma_{31}^{2}-\sigma_{33} \sigma_{12}^{2}+2 \sigma_{12} \sigma_{23} \sigma_{31} \end{aligned} $$ $$ \phi=\frac{1}{3} \cos ^{-1}\left(\frac{2 I_{1}^{3}-9 I_{1} I_{2}+27 I_{3}}{2\left(I_{1}^{2}-3 I_{2}\right)^{3 / 2}}\right) $$ principal stresses in three dimensions: $$ \begin{aligned} \sigma_{1} &=\frac{I_{1}}{3}+\frac{2}{3}\left(\sqrt{I_{1}^{2}-3 I_{2}}\right) \cos \phi \\ \sigma_{2} &=\frac{I_{1}}{3}+\frac{2}{3}\left(\sqrt{I_{1}^{2}-3 I_{2}}\right) \cos \left(\phi-\frac{2 \pi}{3}\right) \\ \sigma_{3} &=\frac{I_{1}}{3}+\frac{2}{3}\left(\sqrt{I_{1}^{2}-3 I_{2}}\right) \cos \left(\phi-\frac{4 \pi}{3}\right) \end{aligned} $$

Leave a Comment

Your email address will not be published. Required fields are marked *